3.15.19 \(\int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx\) [1419]

Optimal. Leaf size=47 \[ -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}} \]

[Out]

-2*arctanh(b^(1/2)*(d*x+c)^(1/2)/(-a*d+b*c)^(1/2))/b^(1/2)/(-a*d+b*c)^(1/2)

________________________________________________________________________________________

Rubi [A]
time = 0.01, antiderivative size = 47, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {65, 214} \begin {gather*} -\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x)*Sqrt[c + d*x]),x]

[Out]

(-2*ArcTanh[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[b*c - a*d]])/(Sqrt[b]*Sqrt[b*c - a*d])

Rule 65

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 214

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x/Rt[-a/b, 2]], x] /; FreeQ[{a, b},
x] && NegQ[a/b]

Rubi steps

\begin {align*} \int \frac {1}{(a+b x) \sqrt {c+d x}} \, dx &=\frac {2 \text {Subst}\left (\int \frac {1}{a-\frac {b c}{d}+\frac {b x^2}{d}} \, dx,x,\sqrt {c+d x}\right )}{d}\\ &=-\frac {2 \tanh ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {b c-a d}}\right )}{\sqrt {b} \sqrt {b c-a d}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.04, size = 47, normalized size = 1.00 \begin {gather*} \frac {2 \tan ^{-1}\left (\frac {\sqrt {b} \sqrt {c+d x}}{\sqrt {-b c+a d}}\right )}{\sqrt {b} \sqrt {-b c+a d}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x)*Sqrt[c + d*x]),x]

[Out]

(2*ArcTan[(Sqrt[b]*Sqrt[c + d*x])/Sqrt[-(b*c) + a*d]])/(Sqrt[b]*Sqrt[-(b*c) + a*d])

________________________________________________________________________________________

Mathics [A]
time = 4.09, size = 49, normalized size = 1.04 \begin {gather*} \frac {-2 \text {ArcTan}\left [\frac {1}{\sqrt {\frac {b}{a d-b c}} \sqrt {c+d x}}\right ]}{\sqrt {\frac {b}{a d-b c}} \left (a d-b c\right )} \end {gather*}

Antiderivative was successfully verified.

[In]

mathics('Integrate[1/((a + b*x)^1*(c + d*x)^(1/2)),x]')

[Out]

-2 ArcTan[1 / (Sqrt[b / (a d - b c)] Sqrt[c + d x])] / (Sqrt[b / (a d - b c)] (a d - b c))

________________________________________________________________________________________

Maple [A]
time = 0.16, size = 37, normalized size = 0.79

method result size
derivativedivides \(\frac {2 \arctan \left (\frac {b \sqrt {d x +c}}{\sqrt {\left (a d -b c \right ) b}}\right )}{\sqrt {\left (a d -b c \right ) b}}\) \(37\)
default \(\frac {2 \arctan \left (\frac {b \sqrt {d x +c}}{\sqrt {\left (a d -b c \right ) b}}\right )}{\sqrt {\left (a d -b c \right ) b}}\) \(37\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x+a)/(d*x+c)^(1/2),x,method=_RETURNVERBOSE)

[Out]

2/((a*d-b*c)*b)^(1/2)*arctan(b*(d*x+c)^(1/2)/((a*d-b*c)*b)^(1/2))

________________________________________________________________________________________

Maxima [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: ValueError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError >> Computation failed since Maxima requested additional constraints; using the 'a
ssume' command before evaluation *may* help (example of legal syntax is 'assume(a*d-b*c>0)', see `assume?` for
 more detail

________________________________________________________________________________________

Fricas [A]
time = 0.31, size = 119, normalized size = 2.53 \begin {gather*} \left [\frac {\log \left (\frac {b d x + 2 \, b c - a d - 2 \, \sqrt {b^{2} c - a b d} \sqrt {d x + c}}{b x + a}\right )}{\sqrt {b^{2} c - a b d}}, \frac {2 \, \sqrt {-b^{2} c + a b d} \arctan \left (\frac {\sqrt {-b^{2} c + a b d} \sqrt {d x + c}}{b d x + b c}\right )}{b^{2} c - a b d}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

[log((b*d*x + 2*b*c - a*d - 2*sqrt(b^2*c - a*b*d)*sqrt(d*x + c))/(b*x + a))/sqrt(b^2*c - a*b*d), 2*sqrt(-b^2*c
 + a*b*d)*arctan(sqrt(-b^2*c + a*b*d)*sqrt(d*x + c)/(b*d*x + b*c))/(b^2*c - a*b*d)]

________________________________________________________________________________________

Sympy [A]
time = 2.22, size = 44, normalized size = 0.94 \begin {gather*} - \frac {2 \operatorname {atan}{\left (\frac {1}{\sqrt {\frac {b}{a d - b c}} \sqrt {c + d x}} \right )}}{\sqrt {\frac {b}{a d - b c}} \left (a d - b c\right )} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)**(1/2),x)

[Out]

-2*atan(1/(sqrt(b/(a*d - b*c))*sqrt(c + d*x)))/(sqrt(b/(a*d - b*c))*(a*d - b*c))

________________________________________________________________________________________

Giac [A]
time = 0.00, size = 46, normalized size = 0.98 \begin {gather*} \frac {2 \arctan \left (\frac {b \sqrt {c+d x}}{\sqrt {-b^{2} c+a b d}}\right )}{\sqrt {-b^{2} c+a b d}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(b*x+a)/(d*x+c)^(1/2),x)

[Out]

2*arctan(sqrt(d*x + c)*b/sqrt(-b^2*c + a*b*d))/sqrt(-b^2*c + a*b*d)

________________________________________________________________________________________

Mupad [B]
time = 0.27, size = 38, normalized size = 0.81 \begin {gather*} \frac {2\,\mathrm {atan}\left (\frac {b\,\sqrt {c+d\,x}}{\sqrt {a\,b\,d-b^2\,c}}\right )}{\sqrt {a\,b\,d-b^2\,c}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/((a + b*x)*(c + d*x)^(1/2)),x)

[Out]

(2*atan((b*(c + d*x)^(1/2))/(a*b*d - b^2*c)^(1/2)))/(a*b*d - b^2*c)^(1/2)

________________________________________________________________________________________